

CRCs

�
Table of Contents

� TOC \o "3-9" \t "Heading 4,4,Heading 5,5,Heading 6,6,Heading 7,7,Heading 8,8,Heading 9,9,Header,1,Header2,2" �Table of Contents	� PAGEREF _Toc524248005 \h ��2�

Introduction	� PAGEREF _Toc524248006 \h ��3�

What are CRCs?	� PAGEREF _Toc524248007 \h ��3�

Mathematical Description of CRCs	� PAGEREF _Toc524248008 \h ��4�

Hardware Approach	� PAGEREF _Toc524248009 \h ��5�

Properties of CRCs	� PAGEREF _Toc524248011 \h ��5�

Specifications and Standards	� PAGEREF _Toc524248012 \h ��6�

Polynomial Representation	� PAGEREF _Toc524248013 \h ��6�

Polynomials Used By Standards	� PAGEREF _Toc524248014 \h ��7�

Variations in Standards and Practice	� PAGEREF _Toc524248015 \h ��7�

Code	� PAGEREF _Toc524248016 \h ��9�

Sample CRCs	� PAGEREF _Toc524248017 \h ��11�

Abbreviations:	� PAGEREF _Toc524248018 \h ��12�

Definitions:	� PAGEREF _Toc524248019 \h ��12�

�Appendix A Example CRC Code	13

Appendix B Example XMODEM CRC Code	16

References	17

�
Introduction

This paper discusses CRCs, Cyclic Redundancy Checksums. The goal is to present the very basics of the mathematical theory and tie that to common standards and implementation used in industry.

First an explanation of the basic concept of checksums is presented. This is followed by a description of using CRCs for checksums and a mathematical description of the CRC algorithm. Next, a simple explanation of the hardware approach used to generate CRCs is given. A short discussion of the error detection properties of CRCs follows. This also introduces the length limitations of various CRC implementations.

Next, specifications for various CRC implementations are discussed. Specifically, how do you represent a particular CRC implementation to distinguish it from another? Basically, they are described with a polynomial representation. After explaining polynomial notation, the polynomials for various standards are presented. Vagaries and complications of various standards are then described.

Software implementation and code provided in the Appendices are then discussed. Specifically, how the polynomial mask in the code is derived from the mathematical polynomial representation is detailed.

Finally, a table of example strings and values for various CRCs is included.

What are CRCs?

Cyclic Redundancy Checksums (CRCs) are values used to detect errors in the transmission and storage of data. Like other checksums, a mathematical algorithm is used to calculate a value based upon the contents of a message. This value is then transmitted or stored with the message. The CRC is recalculated and compared to the CRC in the message upon reception. An error-free message is assumed if the calculated value matches the received value.

The concept of a checksum is simple. Let's say that I'm going to send you some numbers. Then, I'll also send you another number I calculated by adding all the previous numbers up. If your numbers don't add up to this number, we have a problem. CRCs are a variation on this theme. Adding isn't very effective at catching errors in digital data. If a 2 gets changed to a 3 and later a 6 is changed to a 5, the sum will be the same. If I send you the numbers out of order, your sum would still be the same. This is not a real good error check. Unlike simple addition, CRCs are very good at detecting errors.

The algorithm used to generate the checksum distinguishes CRCs. In a CRC the running value (from previous calculations) is “cycled back” with the new data in the message stream to calculate the new (intermediate) value. This cyclic approach provides the distinction from a simple sum since the order of the data affects the final checksum. In practice, the CRC calculations are a peculiar form of division. The "cycling back" is actually carrying the remainder through in the prolonged division calculation.

Basically, the data is considered as polynomial coefficients of one long number. See the section Polynomial Representation for an explanation of polynomial coefficients. A predetermined number (the defining polynomial) is used to divide (modulo 2) the data number. The remainder of this division is the CRC. In practice the CRC is tacked on to the end of the data so that when it is included in the verification calculations no remainder should be found. This works in modulo 2 polynomial mathematics.

Mathematical Description of CRCs

A CRC is the remainder of the division of S*xM/G where S is the bit stream (data) treated as a single (very long) integer, M is the size (in bits) of the CRC, and G is the “generator polynomial”. The division is “polynomial arithmetic” done modulo 2 and is identical with an exclusive-or operation (Press, p 898). The basic approach with a CRC is to append a checksum to a data stream so that when the data stream is divided by the generator polynomial, the remainder is zero.

Given a data stream S where S=0x54, a 16-bit CRC where M=16, and a generator polynomial based upon the XMODEM polynomial where G=0x11021, we have:

In binary: S = 0101,0100,0000,0000,0000,0000

and G = 1,0001,0000,0010,0001

			 _________________01010001

 10001000000100001 (010101000000000000000000

0				 0

				 10101000000000000

	1				 10001000000100001

					 0100000000100001

0							0

					 1000000001000010

					 10000000010000100

	1				 10001000000100001

					 0001000010100101

0							 0

					 10000101001010

0							 0

					 100001010010100

0							 0

					 10000101001010000

	1				 10001000000100001

					 0001101001110001 Remainder is CRC

							0x1a71

Hardware Approach

Initially, CRC implementations used hardware consisting of a linear feedback shift register and exclusive-or gates to perform the modulo-2 division of the data stream. In fact, this is still the most common method for high-speed applications (i.e. ATM and FDDI). Figure 1 shows a logic diagram (for the CCITT X.25 polynomial) of one of these hardware implementations.

�

Figure 1 Linear Feedback Shift Register

Note that the input stream is shifted in LSB first and the register is shifted out in the reverse order of input. In many applications (including CCITT X.25 and AUTODIN II) the bits are also complemented when shifted out of the CRC register.

Properties of CRCs

Undoubtedly CRCs have many obscure properties that mathematicians could discuss for far too long. From a practical standpoint, the properties we are interested in are the ones dealing with error detection. All the common generator polynomials cited in this paper have the following properties (Tannenbaum, p211):

Detect all single bit errors.

Detect all occurrences of two single-bit errors for frames less than 2n-1 bits in length.

Detect all odd number of bits errors.

Detect all burst errors with a length less the n.

Detect all but 1/2n-1 burst errors of length n + 1.

Detect all but 1/2n other errors.

Where n = number of bits in CRC.

TABLE 1.1 CRC Properties

The shift-register concept introduced earlier in the Hardware Approach section brings out one of the practical limitations of a CRC calculation. Since the powers of x are all distinct non-zero elements of 2n, if the shift register is started in any non-zero state, it will return to its original state 2n-1 cycles later and not before (Heard, p1). This is the basis for the condition on the second property above and establishes the length limitation for a particular polynomial (i.e. 8-bit, 15 bytes; 10-bit, 62 bytes; 16-bit, 4094 bytes; 24-bit, 1028573 bytes; 32-bit, 268,435,452 bytes.)

Specifications and Standards

Several protocols specify CRCs used as error detection: CCITT X.25, Ethernet, Military Standard 188/184, ATM, BiSynch, SDLC, HDLC, ad infinitum. They all describe the generator polynomial using a common mathematical representation.

Polynomial Representation

CRC algorithms are typically specified using a binary polynomial expression to identify the coefficients of the generator polynomial ”G” discussed in the mathematical description above.

What does "polynomial coefficients" mean? Numbers in the digital world are expressed as 1's and 0's. The number 18, for example, is 10010. In base 2 this is shorthand for:

	1	0	0	1	0

1*24 + 0*23 + 0*22 + 1*21 + 0*20

Just like in base 10 where 257 is shorthand for 2*102 + 5*101 + 7*100.

Using this notation, the bits for the generator "G" are specified as exponents of a number assuming a binary radix. i. e. x5 denotes bit five.

Polynomials Used By Standards

Most standards specify the polynomial used for their generation using the notation introduced earlier. The MIL-STD-188-184 generator polynomial is given in the military standard as the product of (x + 1) and (x23+ x17 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x3 + 1). This is a confusing and non-standard way to specify a generator polynomial.

x23+ x17 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x3 + 1

*						 x + 1

	--

	 x23 + x17 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x3 + 1

+	x24+ x18 + x14 + x13 + x12 + x10 + x9 + x8 + x6 + x4 + x

	--

x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1

Once the multiplication of the two terms is completed (Knuth, p400), we have the polynomial x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1.

Some of the common polynomials used in industry today are given below:

CRC-8 (Heard)

x8 + x2 + x + 1

CRC-10 (Heard)

x10 + x9 + x5 + x4 + x + 1

CRC X.25 (CCITT)

x16 + x12 + x5 + 1

CRC-16 (Press, p898)

x16 + x15 + x2 + 1

MIL STD 188-184

x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1

AUTODIN II (National Semiconductor, p1-133)

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

TABLE 1.0 CRC Polynomials

Variations in Standards and Practice

Of course it can’t be that easy. The CCITT X.25 standard shows how people and hardware design constraints can complicate simple ideas. Using the same data stream S where S=0x54, and a 16-bit CRC where M=16, and a generator polynomial based upon the CCITT polynomial where G=0x11021, we have a few changes for X.25. The CCITT application shifts the bit stream LSB first and 0x54 becomes 0x2a. CCITT also initializes the CRC register to all 1’s (since leading 0s don’t do much and clock slippage in a synchronous serial line is a real issue). Mathematically, the initialization is like exclusive or’ing the first M bits with all 1’s (Brown) so the 0x2a becomes 0xd5.

				 _____________________1101,1000

1,0001,0000,0010,0001 (1101,0101,1111,1111,0000,0000

	1				1000 1000 0001 0000 1

					0101,1101,1110,1111,1

					 101,1101,1110,1111,10

	1				 100 0100 0000 1000 01

					 001,1001,1110,0111,11

	0				 01,1001,1110,0111,110

					 1,1001,1110,0111,1100

	1				 1 0001 0000 0010 0001

					 0,1000,1110,0101,1101

					 1000,1110,0101,1101,0

	1				 1000 1000 0001 0000 1

					 0000,0110,0100,1101,1

	000				 0110,0100,1101,1000 Remainder

This is read out of the register LSB first which reverses the bit order to give:

					 0001 1011 0010 0110

						 0x1b26

On transmission, the X.25 specification also complements the CRC register and swaps the order of the two octets giving:

					 1101 1001 1110 0100

						 0xd9e4

The typical hardware implementation gives rise to one of the many vagaries encountered in CRC standards. As can be easily visualized, the bit 0 of the input byte and bit 15 of the shift register are aligned. Subsequently, bit 1 of the input byte and bit 14 of the initial register value are aligned, and so on through bit 7 of the input byte and bit 8 of the initial register value. This does not follow the mathematical theory exactly but is the direction of shifting among the three most popular CRC standards (X.25, CRC16, AUTODIN II) and MIL STD 188-184.

The complexity of this type of bit manipulation in software usually mandates a table lookup scheme in efficient software implementations. The XMODEM CRC was developed strictly for a software implementation and, while it uses the same polynomial as the CCITT X.25 CRC, the order of the bits shifted into the register is reversed. Some refer to this as a “reflected” bit order. The XMODEM algorithm is much simpler to implement efficiently in micro-controllers where table lookups are prohibited due to size, language, or operational constraints. A byte-wide algorithm using the XMODEM approach has found significant popularity among the utility industry where cost mandates small 4-bit and 8-bit micro-controllers in telecommunications applications. See the xmodem_crc_byte() routine in the Appendix B listing for details of an efficient algorithm which does not use tables.

Note that various standards have other changes to the basic mathematical algorithms. Most implementations initialize the CRC register to all 1’s but XMODEM, BISYNCH, and MIL STD 188-184 initialize the register to 0. One older implementation of the CCITT polynomial also initialized the register to 0 but the X.25 standard initializes it to all 1’s. Most Utility Industry applications using the XMODEM algorithm initialize the register to all 1’s rather than conforming to the XMODEM implementation. X.25 (and SDLC and HDLC) initialize to all 1’s and also complement the CRC bits and swap the high and low bytes before transmission of the CRC. The Ethernet implementation of the AUTODIN II polynomial initializes to all 1’s and complements the CRC bits but retains the natural byte order. Initialization to all 1’s and the complementing and byte-swap are to detect leading and trailing error bits due to a clock-slippage in the bit stream.

Code

ANSI standard C code is provided in Appendix A which produces a table-driven approach for CRC calculations. With a simple modification to the polynomial mask, tables for the CRC used in CCITT X.25/SDLC/HDLC protocols, IBM’s BISYNCH protocol (CRC-16), the 32-bit Ethernet AUTODIN II CRC (also used in pkzip® file compression), or the 24-bit MIL STD 188-184 CRC is produced. By modifying the direction of the bit shifting operations and the table look-up, the XMODEM protocols CRC and several other popular CRCs (including SMBus’s CRC-8 and ATM’s CRC-10) can be generated.

The code presented has compile-time macros to direct the particular CRC standard to implement. Several compile time macros are also included to facilitate efficiency and portability on various platforms. A separate header file crc.h is provided for function prototypes, typedefs for portability, and macro definitions for the particular standard to compile.

The principle function has two parameters passed, a pointer to a consecutive array of binary values (the data) and the number of values (length) to calculate the CRC upon. The function returns the calculated CRC.

A 256 entry table of remainders (one for each possible value in a byte) is initialized for the particular CRC polynomial implemented the first time the function is called. The accumulator register is then initialized is required by the particular standard. A simple loop then processes each value in the array using a table-lookup scheme to retrieve the remainder of the current byte and residual value accumulated from previous lookups. Finally any extra termination processing required by the particular standard is performed and the CRC value calculated is returned.

Unlike most of the other routines, the update routine for the CRC-10 in the attached C program combines the input data with the CRC accumulator after the accumulator is shifted via the table lookup algorithm. This is done so that the CRC bit positions are included in the accumulation; if they were excluded byte alignment problems would arise since the CRC length is not an integral number of bytes (Heard). This adds an additional operational requirement of terminating the input string with two null bytes to “flush” the CRC from the register.

Protocol Standard	CRC generation mask

CRC-8 (SMBUS)	0x0107

CRC-10 (ATM)	0x0633

CRC-16 (BISYNCH)	0xa001

XMODEM	0x1021

CRC X.25 (also IBM’s SDLC, and ISO’s HDLC)	0x8408

MIL STD 188-184 (24-bit)	0x00df3261

AUTODIN II (32-bit Ethernet)	0xedb88320

TABLE 1.2 CRC Generator Masks

The following depicts how these generation masks are derived from the polynomial expressions.

CRC-8	x8 + x2 + x + 1

 8 2 1 0

 0 0 0 1 0 0 0 0 0 1 1 1

 1 0 7

CRC-10	x10 + x9 + x5 + x4 + x + 1

 10 9 5 4 1 0

 0 1 1 0 0 0 1 1 0 0 1 1

 6 3 3

BISYNCH	x16 + x15 + x2 + 1 (reversed direction)

 0 2 15 16

 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

 A 0 0 1

CCITT	x16 + x12 + x5 + 1 (reversed direction)

 0 5 12 16

 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

 8 4 0 8

XMODEM	x16 + x12 + x5 + 1

 16 12 5 0

 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

 1 0 2 1

MIL-STD-188-184	x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1

(reversed direction)

 0 1 3 4 5 6 7 10 11 14 1718 23 24

 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1

 D F 3 2 6 1

Ethernet	x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

(reversed direction)

 0 1 2 4 5 7 8 1011 12 16 2223 26 32

 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1

 E D B 8 8 3 2 0

Sample CRCs

The table below gives CRCs calculated for several specified strings. No CRC-8 value is given for the two strings which exceed the length limitation for this standard.

String�
CRC-8�
CRC-10�
X.25�
CRC16�
XMODEM�
MIL-STD 188�
Ethernet�
�
‘T’�
0xab�
0x03ae�
0xd9e4�
0xff01�
0x1a71�
0xbba1e4�
0xbe047a60�
�
“THE”�
0xa0�
0x011f�
0x41bb�
0x23b6�
0x1e0a�
0x9b9865�
0xaae22f6c�
�
0x03, 0x73�
0x61�
0x012d�
0x3364�
0x1541�
0x1ba7�
0x7ea58a�
0xa3f861ba�
�
0x01, 0x3f�
0xa8�
0x0045�
0xebdf�
0x8041�
0xf48d�
0x1a7dca�
0xeea40e83�
�
"CatMouse987654321"�
�
0x00b6�
0x910a�
0x38a6�
0xe556�
0x9261ec�
0x084bff58�
�
"THE,QUICK,BROWN,FOX,0123456789"�
�
0x0333�
0x6e20�
0xb96e�
0x0498�
0xbcbe4f�
0x0c0e7bd9�
�
"123456789"�
0xf4�
0x0343�
0x6e90�
0xbb3d�
0x31c3�
0x9aac54�
0xcbf43926�
�

TABLE 1.3 Sample CRCs

�

Abbreviations:

ATM	Asynchronous Transfer Mode

BISYNCH	IBM’s bi-synchronous protocol

CRC	Cyclic Redundancy Checksum

CCITT	Comité Consultatif International Télégraphique et Téléphonique

FDDI	Fibre Distributed Data Interface

HDLC	High-level Data Link Control

IBM	International Business Machines

ISO	International Standards Organization

LSB	Least Significant Bit

MIL STD	Military Standard

SDLC	Synchronous Data Link Control

SMBus	

Definitions:

Algorithm	

Modulo	with respect to a base number

Octet	a group of 8 bits

Polynomial	

�
/* FILE: crc.h */

#ifndef CRC_H_INCLUDED

#define CRC_H_INCLUDED 1

/* define only one of the following... */

//#define CRC8

//#define CRC10

//#define CRC16

//#define X25

//#define XMODEM

//#define MILSTD188

//#define AUTODINII

/* The following typedef's should be adjusted for the particular platform. */

typedef unsigned char UINT8;

typedef unsigned short UINT16;

typedef unsigned long UINT32;

/*

 * CRC-8 x^8 + x^2 + x + 1

 * CRC-10 x^10 + x^9 + x^5 + x^4 + x + 1

 * CRC-16 x^16 + x^15 + x^2 + 1 (reversed)

 * X.25 x^16 + x^12 + x^5 + 1 (reversed)

 * XMODEM x^16 + x^12 + x^5 + 1

 * MILSTD188 x^24+x^23+x^18+x^17+x^14+x^11+x^10+x^7+x^6+x^5+x^4+x^3+x+1 (reversed)

 * AUTODINII x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1 (reversed)

 */

#ifdef CRC8

#define POLY 0x0107

#define CRC_INIT 0x00

typedef UINT8 CRC_TYPE;

#endif

#ifdef CRC10

#define POLY 0x0633

#define CRC_INIT 0x0000

typedef UINT16 CRC_TYPE;

#endif

#ifdef CRC16

#define POLY 0xa001

#define CRC_INIT 0x0000

typedef UINT16 CRC_TYPE;

#endif

#ifdef X25

#define POLY 0x8408

#define CRC_INIT 0xffff

typedef UINT16 CRC_TYPE;

#endif

#ifdef XMODEM

#define POLY 0x1021

#define CRC_INIT 0x0000

typedef UINT16 CRC_TYPE;

#endif

#ifdef MILSTD188

#define POLY 0x00df3261L

#define CRC_INIT 0x00000000L

typedef UINT32 CRC_TYPE;

#endif

#ifdef AUTODINII

#define POLY 0xedb88320L

#define CRC_INIT 0xffffffffL

typedef UINT32 CRC_TYPE;

#endif

/* prototypes */

extern CRC_TYPE crc(unsigned char *ptr, register int len);

#endif /* end of ifndef CRC_H_INCLUDED */

�
/* FILE: crc.c */

#include "crc.h"

CRC_TYPE crc(unsigned char *ptr, register int len)

{

static int tblInitialized = 0;

static CRC_TYPE crcReg, crcTbl[256];

unsigned long i, j, k;

 if(!tblInitialized){ /* init crc lookup table only once */

 #ifdef CRC8

 for(i=0; i < 256; i++){

 j = i;

 for(k=8; k--;){

 j = j & 0x80? (j << 1) ^ POLY : j << 1;

 }

 crcTbl[i] = (CRC_TYPE)j;

 }

 #endif

 #ifdef CRC10

 for(i=0; i < 256; i++){

 j = i << 2;

 for(k=8; k--;){

 if((j <<= 1) & 0x0400){

 j ^= POLY;

 }

 }

 crcTbl[i] = (CRC_TYPE)j;

 }

 #endif

 #ifdef XMODEM

 for(i=0; i < 256; i++){

 j = i << 8;

 for(k=8; k--;){

 j = j & 0x8000? (j << 1) ^ POLY : j << 1;

 }

 crcTbl[i] = (CRC_TYPE)j;

 }

 #endif

 #if defined X25 || CRC16 || MILSTD188 || AUTODINII

 for(i=0; i < 256; i++){

 j = i;

 for(k=8; k--;){

 j = j & 1? (j >> 1) ^ POLY : j >> 1;

 }

 crcTbl[i] = (CRC_TYPE)j;

 }

 #endif

 tblInitialized = 1;

 } /* end of if(!tblInitialized) */

 crcReg = CRC_INIT; /* always init register */

 /* calc CRC */

 for(;len--;){

 #ifdef CRC8

 crcReg = crcTbl[crcReg ^ *ptr++];

 #endif

 #ifdef CRC10

 crcReg = (CRC_TYPE)(((crcReg << 8) & 0x3ff) ^

 crcTbl[((crcReg >> 2) & 0x00ff)] ^ *ptr++);

 #endif

 #ifdef XMODEM

 crcReg = (CRC_TYPE)((crcReg << 8) ^

 crcTbl[((crcReg >> 8) & 0x00ff) ^ *ptr++]);

 #endif

 #if defined X25 || CRC16 || MILSTD188 || AUTODINII

 crcReg = (CRC_TYPE)((crcReg >> 8) ^

 crcTbl[(crcReg ^ *ptr++) & 0x00ff]);

 #endif

 }

 /* finish up and return */

 #ifdef CRC10

 /* flush out with two NULL bytes */

 for(len=2; len--;){

 crcReg = (CRC_TYPE)(((crcReg << 8) & 0x3ff) ^

 crcTbl[((crcReg >> 2) & 0x00ff)]);

 }

 return(crcReg);

 #endif

 #ifdef X25

 /* complement and swap bytes */

 return(~(((crcReg & 0xff) << 8) | (crcReg >> 8)));

 #endif

 #ifdef AUTODINII

 /* complement without swap */

 return(~crcReg);

 #endif

 #if defined CRC8 || CRC16 || XMODEM || MILSTD188

 return(crcReg);

 #endif

} /* end of crc() */

�

CRC_TYPE xmodem_crc_byte(UINT8 *ptr, int len)

{

CRC_TYPE crcReg;

UINT8 tmp, locrc, hicrc;

 crcReg = CRC_INIT;

 for(;len--;){

 hicrc = (UINT8) crcReg;

 locrc = (UINT8) (crcReg >> 8);

 tmp = locrc ^= *ptr++;

 locrc ^= ((tmp >> 4) & 0x0f);

 hicrc ^= ((locrc & 0x0f) << 4);

 hicrc ^= (locrc >> 3) & 0x1f;

 locrc ^= (locrc << 5) & 0xe0;

 crcReg = (CRC_TYPE) (hicrc << 8) | locrc;

 }

return(crcReg);

}

�

Brown, K. (2000, August 10), Cyclic Redundancy Checks [Online]. Available http://www.seanet.com/~ksbrown/kmath458.htm

Campbell, J. (1988), C Programmers Guide to Serial Communications Indianapolis, IN: Howard W. Sams Co.

CCITT (1981) Comité Consultatif International Télégraphique et Téléphonique CCITT Recommendation X.25 (1988) INTERFACE BETWEEN DATA TERMINAL EQUIPMENT (DTE) AND DATA CIRCUIT–TERMINATING EQUIPMENT (DCE) FOR TERMINALS OPERATING IN THE PACKET MODE AND CONNECTED TO PUBLIC DATA NETWORKS BY DEDICATED CIRCUIT

Heard, C. (1994), HEC Tutorial [Online]. Available 8/10/00 http://cell�relay.indiana.edu/cell�relay/publications/software/CRC/32bitCRC.tutorial.html

International Standards Organization ISO-3309 (1979) Data Communications - High-level Data Link Control Procedure

Knuth, D. (1981), The Art of Computer Programming 2nd ed. Seminumerical Algorithms Reading, MA: Addison-Wesley Publishing Company

Milios, J. (1999, August 1), Firmware CRC-8 Implementations for SMBus [Online]. Available http://www.usar.com/pdfs/develop/smbus_crc_firmware.pdf

Military Standard Interoperability and Performance Standard for the Data Control Waveform, MIL-STD-188-184, August 1993

Morse, G.(1986, September) Calculating CRCs by Bits and Bytes. Byte Magazine vol 11, no 9, Martinsville NJ

Press, W. Flannery, B. Teukolsky, S. Vetterling, W. (1992), Numerical recipes in C. (2nd ed.) New York, NY: Cambridge University Press

Tannenbaum, A. (1989) Computer Networks (2nd ed.) Englewood Cliffs, NJ: Prentice-Hall, Inc.

(1988) System Design Handbook (2nd ed.) Santa Clara, CA: Monolithic Memories Inc.

(1992) Local Area Networks Data Book, Santa Clara, CA. National Semiconductor Corporation

	CRCs	Page � PAGE �2� of � NUMPAGES �17�

Appendix A Example CRC Code

Appendix B Example XMODEM CRC Code

References

