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�
Introduction


This paper discusses CRCs, Cyclic Redundancy Checksums.  The goal is to present the very basics of the mathematical theory and tie that to common standards and implementation used in industry.  





First an explanation of the basic concept of checksums is presented.  This is followed by a description of using CRCs for checksums and a mathematical description of the CRC algorithm.  Next, a simple explanation of the hardware approach used to generate CRCs is given.  A short discussion of the error detection properties of CRCs follows.  This also introduces the length limitations of various CRC implementations.  





Next, specifications for various CRC implementations are discussed.  Specifically, how do you represent a particular CRC implementation to distinguish it from another?  Basically, they are described with a polynomial representation.  After explaining polynomial notation, the polynomials for various standards are presented.  Vagaries and complications of various standards are then described.  





Software implementation and code provided in the Appendices are then discussed.  Specifically, how the polynomial mask in the code is derived from the mathematical polynomial representation is detailed.  





Finally, a table of example strings and values for various CRCs is included.  








What are CRCs?


Cyclic Redundancy Checksums (CRCs) are values used to detect errors in the transmission and storage of data.  Like other checksums, a mathematical algorithm is used to calculate a value based upon the contents of a message.  This value is then transmitted or stored with the message.  The CRC is recalculated and compared to the CRC in the message upon reception.  An error-free message is assumed if the calculated value matches the received value.  





The concept of a checksum is simple.  Let's say that I'm going to send you some numbers.  Then, I'll also send you another number I calculated by adding all the previous numbers up.  If your numbers don't add up to this number, we have a problem.  CRCs are a variation on this theme.  Adding isn't very effective at catching errors in digital data.  If a 2 gets changed to a 3 and later a 6 is changed to a 5, the sum will be the same.  If I send you the numbers out of order, your sum would still be the same.  This is not a real good error check.  Unlike simple addition, CRCs are very good at detecting errors.  





The algorithm used to generate the checksum distinguishes CRCs.  In a CRC the running value (from previous calculations) is “cycled back” with the new data in the message stream to calculate the new (intermediate) value.  This cyclic approach provides the distinction from a simple sum since the order of the data affects the final checksum.  In practice, the CRC calculations are a peculiar form of division.  The "cycling back" is actually carrying the remainder through in the prolonged division calculation.  





Basically, the data is considered as polynomial coefficients of one long number.  See the section Polynomial Representation for an explanation of polynomial coefficients.  A predetermined number (the defining polynomial) is used to divide (modulo 2) the data number.  The remainder of this division is the CRC.  In practice the CRC is tacked on to the end of the data so that when it is included in the verification calculations no remainder should be found.  This works in modulo 2 polynomial mathematics.  





Mathematical Description of CRCs


A CRC is the remainder of the division of S*xM/G where S is the bit stream (data) treated as a single (very long) integer, M is the size (in bits) of the CRC, and G is the “generator polynomial”.  The division is “polynomial arithmetic” done modulo 2 and is identical with an exclusive-or operation (Press, p 898).  The basic approach with a CRC is to append a checksum to a data stream so that when the data stream is divided by the generator polynomial, the remainder is zero.  





Given a data stream S where S=0x54, a 16-bit CRC where M=16, and a generator polynomial based upon the XMODEM polynomial where G=0x11021, we have:





In binary:     S = 0101,0100,0000,0000,0000,0000 


and G = 1,0001,0000,0010,0001





			     _________________01010001


    10001000000100001 ( 010101000000000000000000 


0				                0        


				 ---------------------   


				 10101000000000000       


	1				 10001000000100001       


					 ---------------------   


					  0100000000100001       


0							0      


					   --------------------  


					   1000000001000010      





					   10000000010000100     


	1				   10001000000100001     


					   --------------------- 


					    0001000010100101     


0							  0    


					   --------------------  


					       10000101001010    


0							   0   


					   --------------------  


					       100001010010100   


0							    0  


					   --------------------  





					       10000101001010000 


	1				       10001000000100001 


					   --------------------- 


					        0001101001110001  Remainder is CRC


							0x1a71





Hardware Approach


Initially, CRC implementations used hardware consisting of a linear feedback shift register and exclusive-or gates to perform the modulo-2 division of the data stream.  In fact, this is still the most common method for high-speed applications (i.e. ATM and FDDI).  Figure 1 shows a logic diagram (for the CCITT X.25 polynomial) of one of these hardware implementations.  





�








Figure 1 Linear Feedback Shift Register





Note that the input stream is shifted in LSB first and the register is shifted out in the reverse order of input.  In many applications (including CCITT X.25 and AUTODIN II) the bits are also complemented when shifted out of the CRC register.  


Properties of CRCs


Undoubtedly CRCs have many obscure properties that mathematicians could discuss for far too long.  From a practical standpoint, the properties we are interested in are the ones dealing with error detection.  All the common generator polynomials cited in this paper have the following properties (Tannenbaum, p211):





Detect all single bit errors.


Detect all occurrences of two single-bit errors for frames less than 2n-1 bits in length.


Detect all odd number of bits errors.


Detect all burst errors with a length less the n.


Detect all but 1/2n-1 burst errors of length n + 1.


Detect all but 1/2n other errors.





Where n = number of bits in CRC.





TABLE 1.1 CRC Properties





The shift-register concept introduced earlier in the Hardware Approach section brings out one of the practical limitations of a CRC calculation.  Since the powers of x are all distinct non-zero elements of 2n, if the shift register is started in any non-zero state, it will return to its original state 2n-1 cycles later and not before (Heard, p1).  This is the basis for the condition on the second property above and establishes the length limitation for a particular polynomial (i.e. 8-bit, 15 bytes; 10-bit, 62 bytes; 16-bit, 4094 bytes; 24-bit, 1028573 bytes; 32-bit, 268,435,452 bytes.)  








Specifications and Standards


Several protocols specify CRCs used as error detection: CCITT X.25, Ethernet, Military Standard 188/184, ATM, BiSynch, SDLC, HDLC, ad infinitum.  They all describe the generator polynomial using a common mathematical representation.  





Polynomial Representation





CRC algorithms are typically specified using a binary polynomial expression to identify the coefficients of the generator polynomial ”G” discussed in the mathematical description above.  





What does "polynomial coefficients" mean?  Numbers in the digital world are expressed as 1's and 0's.  The number 18, for example, is 10010.  In base 2 this is shorthand for:





	1	0	0	1	0


1*24 + 0*23 + 0*22 + 1*21 + 0*20





Just like in base 10 where 257 is shorthand for 2*102 + 5*101 + 7*100.  





Using this notation, the bits for the generator "G" are specified as exponents of a number assuming a binary radix.  i. e. x5 denotes bit five.  








Polynomials Used By Standards





Most standards specify the polynomial used for their generation using the notation introduced earlier.  The MIL-STD-188-184 generator polynomial is given in the military standard as the product of (x + 1) and (x23+ x17 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x3 + 1).  This is a confusing and non-standard way to specify a generator polynomial.  





x23+ x17 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x3 + 1


*						      x + 1


	--------------------------------------------------------------------------------------------------------


	    x23 + x17 +    x13 + x12 + x11 +       x9 + x8 +      x7 + x5 + x3 + 1


+	x24+ x18 + x14 + x13 + x12 +      x10 + x9 + x8 +          x6 + x4 + x


	--------------------------------------------------------------------------------------------------------


x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1





Once the multiplication of the two terms is completed (Knuth, p400), we have the polynomial x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1.  





Some of the common polynomials used in industry today are given below:





CRC-8 (Heard)


x8 + x2 + x + 1


CRC-10 (Heard)


x10 + x9 + x5 + x4 + x + 1


CRC X.25 (CCITT)


x16 + x12 + x5 + 1


CRC-16 (Press, p898)


x16 + x15 + x2 + 1


MIL STD 188-184


x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1


AUTODIN II (National Semiconductor, p1-133)


x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1





TABLE 1.0 CRC Polynomials








Variations in Standards and Practice





Of course it can’t be that easy.  The CCITT X.25 standard shows how people and hardware design constraints can complicate simple ideas.  Using the same data stream S where S=0x54, and a 16-bit CRC where M=16, and a generator polynomial based upon the CCITT polynomial where G=0x11021, we have a few changes for X.25.  The CCITT application shifts the bit stream LSB first and 0x54 becomes 0x2a.  CCITT also initializes the CRC register to all 1’s (since leading 0s don’t do much and clock slippage in a synchronous serial line is a real issue).  Mathematically, the initialization is like exclusive or’ing the first M bits with all 1’s (Brown) so the 0x2a becomes 0xd5.  





				     _____________________1101,1000


1,0001,0000,0010,0001 ( 1101,0101,1111,1111,0000,0000


	1				1000 1000 0001 0000 1


					---------------------


					0101,1101,1110,1111,1


					 101,1101,1110,1111,10


	1				 100 0100 0000 1000 01


					 ---------------------


					 001,1001,1110,0111,11


	0				  01,1001,1110,0111,110


					  ---------------------


					   1,1001,1110,0111,1100


	1				   1 0001 0000 0010 0001


					   ---------------------


					   0,1000,1110,0101,1101


					     1000,1110,0101,1101,0


	1				     1000 1000 0001 0000 1


					     ---------------------


					     0000,0110,0100,1101,1


	000				          0110,0100,1101,1000 Remainder





This is read out of the register LSB first which reverses the bit order to give:





					        0001 1011 0010 0110


						        0x1b26





On transmission, the X.25 specification also complements the CRC register and swaps the order of the two octets giving:





					        1101 1001 1110 0100


						        0xd9e4





The typical hardware implementation gives rise to one of the many vagaries encountered in CRC standards.  As can be easily visualized, the bit 0 of the input byte and bit 15 of the shift register are aligned.  Subsequently, bit 1 of the input byte and bit 14 of the initial register value are aligned, and so on through bit 7 of the input byte and bit 8 of the initial register value.  This does not follow the mathematical theory exactly but is the direction of shifting among the three most popular CRC standards (X.25, CRC16, AUTODIN II) and MIL STD 188-184.  





The complexity of this type of bit manipulation in software usually mandates a table lookup scheme in efficient software implementations.  The XMODEM CRC was developed strictly for a software implementation and, while it uses the same polynomial as the CCITT X.25 CRC, the order of the bits shifted into the register is reversed.  Some refer to this as a “reflected” bit order.  The XMODEM algorithm is much simpler to implement efficiently in micro-controllers where table lookups are prohibited due to size, language, or operational constraints.  A byte-wide algorithm using the XMODEM approach has found significant popularity among the utility industry where cost mandates small 4-bit and 8-bit micro-controllers in telecommunications applications.  See the xmodem_crc_byte() routine in the Appendix B listing for details of an efficient algorithm which does not use tables.  





Note that various standards have other changes to the basic mathematical algorithms.  Most implementations initialize the CRC register to all 1’s but XMODEM, BISYNCH, and MIL STD 188-184 initialize the register to 0.  One older implementation of the CCITT polynomial also initialized the register to 0 but the X.25 standard initializes it to all 1’s.  Most Utility Industry applications using the XMODEM algorithm initialize the register to all 1’s rather than conforming to the XMODEM implementation.  X.25 (and SDLC and HDLC) initialize to all 1’s and also complement the CRC bits and swap the high and low bytes before transmission of the CRC.  The Ethernet implementation of the AUTODIN II polynomial initializes to all 1’s and complements the CRC bits but retains the natural byte order.  Initialization to all 1’s and the complementing and byte-swap are to detect leading and trailing error bits due to a clock-slippage in the bit stream.  





Code


ANSI standard C code is provided in Appendix A which produces a table-driven approach for CRC calculations.  With a simple modification to the polynomial mask, tables for the CRC used in CCITT X.25/SDLC/HDLC protocols, IBM’s BISYNCH protocol (CRC-16), the 32-bit Ethernet AUTODIN II CRC (also used in pkzip® file compression), or the 24-bit MIL STD 188-184 CRC is produced.  By modifying the direction of the bit shifting operations and the table look-up, the XMODEM protocols CRC and several other popular CRCs (including SMBus’s CRC-8 and ATM’s CRC-10) can be generated.  





The code presented has compile-time macros to direct the particular CRC standard to implement.  Several compile time macros are also included to facilitate efficiency and portability on various platforms.  A separate header file crc.h is provided for function prototypes, typedefs for portability, and macro definitions for the particular standard to compile.  





The principle function has two parameters passed, a pointer to a consecutive array of binary values (the data) and the number of values (length) to calculate the CRC upon.  The function returns the calculated CRC.  





A 256 entry table of remainders (one for each possible value in a byte) is initialized for the particular CRC polynomial implemented the first time the function is called.  The accumulator register is then initialized is required by the particular standard.  A simple loop then processes each value in the array using a table-lookup scheme to retrieve the remainder of the current byte and residual value accumulated from previous lookups.  Finally any extra termination processing required by the particular standard is performed and the CRC value calculated is returned.  





Unlike most of the other routines, the update routine for the CRC-10 in the attached C program combines the input data with the CRC accumulator after the accumulator is shifted via the table lookup algorithm. This is done so that the CRC bit positions are included in the accumulation; if they were excluded byte alignment problems would arise since the CRC length is not an integral number of bytes (Heard).  This adds an additional operational requirement of terminating the input string with two null bytes to “flush” the CRC from the register.  








Protocol Standard	CRC generation mask


CRC-8 (SMBUS)	0x0107


CRC-10 (ATM)	0x0633


CRC-16 (BISYNCH)	0xa001


XMODEM	0x1021


CRC X.25  (also IBM’s SDLC, and ISO’s HDLC)	0x8408


MIL STD 188-184 (24-bit)	0x00df3261


AUTODIN II (32-bit Ethernet)	0xedb88320





TABLE 1.2 CRC Generator Masks








The following depicts how these generation masks are derived from the polynomial expressions.





CRC-8	x8 + x2 + x + 1


        8              2 1 0


  0 0 0 1   0 0 0 0  0 1 1 1


        1              0            7








CRC-10	x10 + x9 + x5 + x4 + x + 1


   10 9         5 4      1 0


  0 1 1 0   0 0 1 1  0 0 1 1


        6              3            3








BISYNCH	x16 + x15 + x2 + 1 (reversed direction)


  0   2                            15  16


  1 0 1 0  0 0 0 0   0 0 0 0  0 0 0 1   1


        A            0              0            1








CCITT	x16 + x12 + x5 + 1 (reversed direction)


  0          5               12        16


  1 0 0 0  0 1 0 0   0 0 0 0  1 0 0 0   1


           8         4               0            8








XMODEM	x16 + x12 + x5 + 1


  16       12                5          0


   1  0 0 0 1  0 0 0 0   0 0 1 0  0 0 0 1


              1             0              2            1








MIL-STD-188-184	x24 + x23 + x18 + x17 + x14 + x11 + x10 + x7 + x6 + x5 + x4 + x3 + x + 1


(reversed direction)


  0 1   3   4 5 6 7       10 11     14       1718          23  24


  1 1 0 1   1 1 1 1    0 0 1 1   0 0 1 0    0 1 1 0   0 0 0 1   1


        D              F               3              2                6              1





Ethernet	x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1


(reversed direction)


  0 1 2    4 5   7   8  1011 12        16           2223      26            32


  1 1 1 0  1 1 0 1   1 0 1 1  1 0 0 0   1 0 0 0  0 0 1 1   0 0 1 0  0 0 0 0  1


       E             D              B            8              8            3              2             0








Sample CRCs


The table below gives CRCs calculated for several specified strings.  No CRC-8 value is given for the two strings which exceed the length limitation for this standard.  








String�
CRC-8�
CRC-10�
X.25�
CRC16�
XMODEM�
MIL-STD 188�
Ethernet�
�
‘T’�
0xab�
0x03ae�
0xd9e4�
0xff01�
0x1a71�
0xbba1e4�
0xbe047a60�
�
“THE”�
0xa0�
0x011f�
0x41bb�
0x23b6�
0x1e0a�
0x9b9865�
0xaae22f6c�
�
0x03, 0x73�
0x61�
0x012d�
0x3364�
0x1541�
0x1ba7�
0x7ea58a�
0xa3f861ba�
�
0x01, 0x3f�
0xa8�
0x0045�
0xebdf�
0x8041�
0xf48d�
0x1a7dca�
0xeea40e83�
�
"CatMouse987654321"�
�
0x00b6�
0x910a�
0x38a6�
0xe556�
0x9261ec�
0x084bff58�
�
"THE,QUICK,BROWN,FOX,0123456789"�
�
0x0333�
0x6e20�
0xb96e�
0x0498�
0xbcbe4f�
0x0c0e7bd9�
�
"123456789"�
0xf4�
0x0343�
0x6e90�
0xbb3d�
0x31c3�
0x9aac54�
0xcbf43926�
�



TABLE 1.3 Sample CRCs





�



Abbreviations:


ATM	Asynchronous Transfer Mode


BISYNCH	IBM’s bi-synchronous protocol


CRC	Cyclic Redundancy Checksum


CCITT	Comité Consultatif International Télégraphique et Téléphonique


FDDI	Fibre Distributed Data Interface


HDLC	High-level Data Link Control


IBM	International Business Machines


ISO	International Standards Organization


LSB	Least Significant Bit


MIL STD	Military Standard


SDLC	Synchronous Data Link Control


SMBus	





Definitions:





Algorithm	


Modulo	with respect to a base number


Octet	a group of 8 bits


Polynomial	





�
/* FILE: crc.h */





#ifndef CRC_H_INCLUDED


#define CRC_H_INCLUDED 1





/* define only one of the following... */


//#define CRC8


//#define CRC10


//#define CRC16


//#define X25


//#define XMODEM


//#define MILSTD188


//#define AUTODINII





/* The following typedef's should be adjusted for the particular platform. */


typedef unsigned char  UINT8;


typedef unsigned short UINT16;


typedef unsigned long  UINT32;





/*


 * CRC-8     x^8  + x^2 + x + 1


 * CRC-10    x^10 + x^9 + x^5 + x^4 + x + 1


 * CRC-16    x^16 + x^15 + x^2 + 1 (reversed)


 * X.25      x^16 + x^12 + x^5 + 1 (reversed)


 * XMODEM    x^16 + x^12 + x^5 + 1


 * MILSTD188 x^24+x^23+x^18+x^17+x^14+x^11+x^10+x^7+x^6+x^5+x^4+x^3+x+1 (reversed)


 * AUTODINII x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1 (reversed)


 */





#ifdef CRC8


#define POLY       0x0107


#define CRC_INIT   0x00


typedef UINT8      CRC_TYPE;


#endif





#ifdef CRC10


#define POLY       0x0633


#define CRC_INIT   0x0000


typedef UINT16     CRC_TYPE;


#endif





#ifdef CRC16


#define POLY       0xa001


#define CRC_INIT   0x0000


typedef UINT16     CRC_TYPE;


#endif





#ifdef X25


#define POLY       0x8408


#define CRC_INIT   0xffff


typedef UINT16     CRC_TYPE;


#endif





#ifdef XMODEM


#define POLY       0x1021


#define CRC_INIT   0x0000


typedef UINT16     CRC_TYPE;


#endif





#ifdef MILSTD188


#define POLY       0x00df3261L


#define CRC_INIT   0x00000000L


typedef UINT32     CRC_TYPE;


#endif





#ifdef AUTODINII


#define POLY       0xedb88320L


#define CRC_INIT   0xffffffffL


typedef UINT32     CRC_TYPE;


#endif





/* prototypes */


extern CRC_TYPE crc( unsigned char *ptr, register int len );





#endif  /* end of ifndef CRC_H_INCLUDED */


�
/* FILE: crc.c */


#include "crc.h"





CRC_TYPE crc( unsigned char *ptr, register int len )


{


static int tblInitialized = 0;


static CRC_TYPE crcReg, crcTbl[ 256 ];


unsigned long i, j, k;





   if( !tblInitialized ){   /* init crc lookup table only once */





      #ifdef CRC8


      for( i=0; i < 256; i++ ){


         j = i;


         for( k=8; k--; ){


            j = j & 0x80? (j << 1) ^ POLY : j << 1;


         }


         crcTbl[ i ] = (CRC_TYPE)j;


      }


      #endif





      #ifdef CRC10


      for( i=0; i < 256; i++ ){


         j = i << 2;


         for( k=8; k--; ){


            if( (j <<= 1) & 0x0400 ){


               j ^= POLY;


            }


         }


         crcTbl[ i ] = (CRC_TYPE)j;


      }


      #endif





      #ifdef XMODEM


      for( i=0; i < 256; i++ ){


         j = i << 8;


         for( k=8; k--; ){


            j = j & 0x8000? (j << 1) ^ POLY : j << 1;


         }


         crcTbl[ i ] = (CRC_TYPE)j;


      }


      #endif





      #if defined X25 || CRC16 || MILSTD188 || AUTODINII


      for( i=0; i < 256; i++ ){


         j = i;


         for( k=8; k--; ){


            j = j & 1? (j >> 1) ^ POLY : j >> 1;


         }


         crcTbl[ i ] = (CRC_TYPE)j;


      }


      #endif





      tblInitialized = 1;


   } /* end of if(!tblInitialized) */





   crcReg = CRC_INIT;     /* always init register */





   /* calc CRC */


   for( ;len--; ){


      #ifdef CRC8


      crcReg = crcTbl[ crcReg ^ *ptr++ ];


      #endif





      #ifdef CRC10


      crcReg = (CRC_TYPE)(((crcReg << 8) & 0x3ff) ^  


                             crcTbl[ ((crcReg >> 2) & 0x00ff) ] ^ *ptr++ );


      #endif





      #ifdef XMODEM


      crcReg = (CRC_TYPE)((crcReg << 8) ^  


                             crcTbl[ ((crcReg >> 8) & 0x00ff) ^ *ptr++ ]);


      #endif





      #if defined X25 || CRC16 || MILSTD188 || AUTODINII


      crcReg = (CRC_TYPE)((crcReg >> 8) ^ 


                             crcTbl[ (crcReg ^ *ptr++) & 0x00ff ]);


      #endif


   }








   /* finish up and return */


   #ifdef CRC10


   /* flush out with two NULL bytes */


   for( len=2; len--; ){


      crcReg = (CRC_TYPE)(((crcReg << 8) & 0x3ff) ^  


                          crcTbl[ ((crcReg >> 2) & 0x00ff) ] );


   }


   return( crcReg );


   #endif


   #ifdef X25


   /* complement and swap bytes */


   return( ~(((crcReg & 0xff) << 8) | (crcReg >> 8)) );


   #endif





   #ifdef AUTODINII


   /* complement without swap */


   return( ~crcReg );


   #endif





   #if defined CRC8 || CRC16 || XMODEM || MILSTD188


   return( crcReg );


   #endif





} /* end of crc() */








�



CRC_TYPE xmodem_crc_byte( UINT8 *ptr, int len )


{


CRC_TYPE crcReg;


UINT8 tmp, locrc, hicrc;





   crcReg = CRC_INIT;





   for( ;len--; ){


      hicrc = (UINT8) crcReg;


      locrc = (UINT8) (crcReg >> 8);


      tmp = locrc ^= *ptr++;


    


      locrc ^= ((tmp >> 4) & 0x0f);


      hicrc ^= ((locrc & 0x0f) << 4);


      hicrc ^= (locrc >> 3) & 0x1f;


      locrc ^= (locrc << 5) & 0xe0;





      crcReg = (CRC_TYPE) (hicrc << 8) | locrc;


   }





return( crcReg );


}











�
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